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Abstract-The free convection of an electrostrictive fluid enclosed between a horizontally heated wire 
and a coaxial, cooled cylinder, under an applied nonuniform radial electric field, is examined. An 
approximate solution is obtained by extending Langmuir’s conduction model for fine wires to the 
electrostrictive case. It is found that the increase in Nusselt number due to the additional circulation 
produced by the electrostrictive force depends on the Grashof number, Prandtl number and a third 
characteristic non-dimensional number of the same nature as the Grashof number but based on an 
electrostatic rather than gravitational field. The theoretical results are compared with available 

experimental data and are found in good agreement. 

NOMENCLATURE 

magnetic flux ; 

electric displacement vector; 
diameter of the wire ; 

electric field; 
electric field at surface of the wire ; 

force per unit volume on the fluid ; 

force in the absence of heating; 
P&d3 

Grashof number, va- ; 

QY 

a 

49 
r, 
u 
se, 
T, 
TO, 

heat transferred per unit length per unit 
time ; 

velocity of the fluid ; 
radius of the wire; 
internal energy; 

&8,E2d2 
Senftleben number +; 

absolute temperature of the fluid; 
absolute temperature at the surface of 
the cylinder; 
velocity component in vertical direc- 
tion. 

gravitational acceleration; 
equivalent gravitational acceleration tireek symbols 

for the forces of electrostriction; a, thermal diffusivity; 
1 

magnetic field intensity; 82 
Boltzmann’s constant ; 

coefficient of thermal expansion, r; 

molecular weight of the gas molecule; YY constant, specifying the temperalure 

Avogadro’s number ; 
dependence of x defined by (A-6) and 

Nusselt number, n$- ; 
(A-7) ; 

6, idealized boundary layer thickness; 

change of NU due to’the electric field; BE: 
dielectric constant; 
temperature difference; 

Prandtl number, ” ; 
e 5, temperature difference at the surface of 

pressure in the &d; 
the wire; 

A, coefficient of heat conduction of the 
permanent electric moment of a gas fluid ; 
molecule ; I% magnetic permeability; 
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kinematic viscosity of the fluid; 
mass density; 
mass density in the absence of heating; 
coefficient of electric polarization ; 
electric susceptibility of the fluid; 
electric susceptibility in the absence of 
heating. 

INTRODUCTION 

FROM the classical theory of electricity and 
magnetism we know that the “Maxwell stresses” 
give rise to body forces made up of the following 
components [l]: electrostatic (applied on free 
electric charges); ponderomotive (the macro- 
scopic summation of the elementary Lorentz 
forces applied on charged particles) ; electro- 
strictive (present when the dielectric constant is a 
function of the mass density) ; a force due to an 
inhomogeneous dielectric; its magnetic counter- 
part, and the magnetostrictive force which is 
present when the magnetic permeability is a 
function of the mass density. 

For an electrically neutral but electrically 
conducting fluid in the presence of an electro- 
magnetic field the only substantial force in a 
great number of applications is the pondero- 
motive force. Indeed, what is called today 
magneto-fluid-mechanics deals exclusively with 
this force. However there are cases in which the 
forces associated with the dielectric constant, 
although normally small, become important 
when compared with equally small forces such as 
bouyant ones. This paper deals with such a case. 

About 1930 Senftleben and Braun [2] dis- 
covered that when an electric field is applied 
radially between a horizontal heated wire and a 
cylinder, the heat-transfer rate increases up to 
50 per cent provided a paraelectric gas (a gas 
whose molecules carry a permanent electric 
moment), is used. The authors attributed this 
increase to the additional thermal circulation 
current produced by the electrostrictive forces. 
Fig. 1 shows the general layout of this experi- 
ment. 

According to Debye’s theory of electric 
polarization, variable electric susceptibility of 
gases arises from the following two causes: (a) 
the presence of an electric field which, even in a 
symmetrical molecule, will induce a dipole 
moment (electric polarization) and (b) if the 

I I I I I I 1 

FIG. 1. Experimental layout used by Senftleben and 
Braun [2] for the study of the influence of electro- 

strictive forces in natural thermal convection. 

dipole possesses a permanent dipole moment 
(non-symmetric molecules), the molecule will 
tend to align itself with the electric field. The 
electric susceptibility due to the first cause 
is proportional to the mass density and inversely 
proportional to the absolute temperature [3]. 
As a result of the above dependence, if a cold 
volume element is found in a nonuniform electric 
field, the force at this point will exceed the force 
to which a hot volume in the same position 
is subjected. A tendency is thus produced for the 
cold volume elements to replace the hot ones as 
in the case of a pure gravitational force. 

Kronig and Schwarz [4] adopted this physical 
model and forwarded some arguments based on 
general nondimensional considerations. They 
employed the usual definitions of Nusselt num- 
ber (Nu), Grashof number (Gr) and Prandtl 
number (Pr) as well as a new nondimen- 
sional number of the same nature as the Grashof 
number, but based on an electrostatic rather 
than gravitational field. In this work we call this 
number Senftleben number (Se)? from the name 
of one of the research workers who we believe 
first studied this effect [2]. 

Kronig and Schwarz [4] assumed that the 
Nusselt number can be written in the following 
functional form: 

t In [4] this number is called “electrical characteristic 
number” and abbreviated to El. 

: This form is suggested from experiments. 
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Nu = F(Gr * Pr) + G(Se * Pr). (1) 
The change of Nusselt number due to the appli- 
cation of the electric field is then given by: 

ANu = G(Se - Pr). (2) 

Senftleben’s results on gases [l] appear to 
agree with this dependence satisfactorily, if the 
physical constants are based on the temperature 
of the wire, since all the results can be collected 
into a narrow band (an almost single curve) by 
using (ANu) and (Se * Pr) as co-ordinates. In 
order to further confirm the above arguments, 
Ashmann and Kronig [5] and De Haan [6] con- 
ducted several experiments with polar liquids. 
They found that when an electric field is applied, 
the heat transfer increases generally in the same 
fashion as in gases. 

Our purpose in the present paper is to forward 
further the non-dimensional analysis of [4] by 
providing an analytic expression for the Nusselt 
number in its dependence on the Grashof, 
Prandtl and Senftleben number. This is done 
only in an approximate way, since the exact 
solution of the conservation equations is 
extremely difficult (if at all possible), because, 
apart from the fact that the equations are 
coupled, it is not possible to reduce them to 
ordinary differential equations through similarity 
arguments, nor are they of the boundary layer 
type.? The approximation is based on an ex- 
tension of Langmuir’s idea [7] of an effective 
“conduction ring”. 

2. ANALYSIS 

The problem of free convection of a heated 
fine wire with an electric field has been con- 
sidered by Langmuir [7] ; he idealized the boun- 
dary layer by a stationary cylindrical ring around 
the wire, through which the heat is transferred 
from the wire by the mechanism of thermal 
conduction only. If the idealized equivalent 
“conducfion ring” thickness is 6, the Nusselt 
number (defined explicitly in the list of symbols) 
is given by 

2 
N” = In[i+%/d)] 

(3) 

-.- 
t Because the boundary layer thickness for a very thin 

wire is of the same order of magnitude or greater than the 
radius of the wire. 

For “thick” wires we have 26/d ,< 1; for very 
fine wires, under investigation here, we have 
26/d > 1. In the case of free convection with no 
electric field, 26/d is determined by considering 
the average film heat-transfer coefficient for the 
wire having the same value as the average film 
heat-transfer coefficient on a vertical plate with a 
height: of 2.5d; the results are 

26 
-= 
d 

The Grashof and Prandtl 

for gases (4a) 

for liquids 5. (4b) 

numbers are defined 
explicitly in the list of symbols. Substituting 
these expressions for S/d into equation (3) gives 

In extending these solutions to the case where 
an electric field is present, let us consider the 
fundamental conservation equations after the 
following assumptions are made : 

I. The flow is steady. 
2. For a very long horizontal wire, the problem 

is a two dimensional one; end effects are not 
considered. 

3. The flow is assumed to be semi-incompres- 
sible, with the viscosity and thermal con- 
ductivity remaining constant. 

The conservation equations of mass, momen- 
tum and energy are then as follows: 

C.;;=O (6) 

$ The numerical value of 2.5 is suggested by Her- 
mann’s solution 181 for a finite cylinder where the 
boundary layer as&nption is true. 

6 546 and 219 are obtained from Eckert’s solution over 
a iertical plate [9]. We have also used Pr = 0.75 for 
gases and Pr = 5.5 for liquids in the calculations of these 
constants. 
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-z 
q * VtJ = ave. (8) 

In the above 8 is the temperature difference of the 
fluid relative to the temperature of the cylinder. 

In (7), -Tp@ is the usual force term in free 
convection due to gravity, the electrostrictive 
force is given byf -@yBVE2. In (8), we have 
neglected the viscous dissipation and the part 
of the internal energy due to po1arization.S 

The mechanism of action of the electro- 
strictive forces is depicted in Fig. 2. The points 
A, A’, B and B’ are the corners of a rectangle 
with the horizontally heated wire located at its 
center. The electrostrictive forces act in the 

FIG. 2. The mechanism of action of el~trostriction in 
the presence of natural thermal convection. 

outward radial direction as shown in the figure, 
with the forces at the points A and A’ being larger 
than the ones acting at B and B’, because a higher 
temperature isotherm passes through them. 
Furthermore we note that because of the 
symmetry of the temperature field with respect 
to the vertical plane passing through the axis 
_ ._~_ .___. 

f The derivation is given in Appendix A. 
: See Appendix B for a complete discussion of the 

energy equation. 

of the wire, the horizontal components of the 
electrostrictive forces will balance each other. 

It follows from the above discussion that the 
net amount of the electrostrictive forces is in the 
upward direction and their order of magnitude 
from (7) is (&&E2)/(r + 8). On the other hand, 

from the fact that V . z== 0 and for very thin 
wires we have E/Es = r/(u + 6) =t r/8 and hence 
the force is equal to &Q8E,fr2/63. At this point we 
assume, as in the case of free convection from a 
fine wire, that the velocities are so small that the 
inertia forces terms involving the square of the 
velocities may be neglected. Moreover, since 
there is no pressure difference imposed from the 
outside, the pressure force in the vertical direc- 
tion is negligible as in the case of the free convec- 
tion from a vertical plate. 

Bearing in mind the above, the order of magni- 
tude of the vertical component of the momentum 
equation and the energy equation may be written 
in the following average sense : 

where u is the velocity component in the vertical 
direction and C,, C,, C, are appropriate con- 
stants. Eliminating the velocity u from (9) and 
(lo), we obtain after some rearrangement 

where 

and 

In the case of no electric field, Se 1 0, and the 
solution of (11) for 28/d is : 

(14) 

___._.-.. -_._--. _____ _--.. ._ __-___ 
5 Comparing this definition with the definition for the 

Grashof number we see that they are the same if an 
equivalent ~avitational field g* is chosen as follows 
g* = yEs=/d. 
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Comparing (14) with (5), we have C6 = 546 for 
gases, and C, = 219 for liquids. 

When Se is not zero, we must solve (11) for 
25/d and substitute into (3) to find Nu as a 
function of the quantities Gr. Pr and Se = Pr. 
The result is rather cumbersome and hence 
we prefer to present the ratio 28/d as a function 
of Nz4 as follows: 

(151 

Substituting (15) into (11) and rearranging 
yields 

C5 -- Gr + Pr (eslNu - 1)” 
‘---- . Se * Pr = -- --cgce2,Nu _ 1) (16) 

The constant CI in (I 6) will be determined from 
experiments and it is evident that it should 
depend on the geometry of the experiment and 
at most the Prandtl number of the fluid.7 

For very large values of Se, it is seen in (16) 
that the quantity (Gr + Pr) [(ea’N@) - II4 becomes 
negligible and NZJ cr: dNu. Equation (16) then 
takes the following asymptotic form 

G ~- cse * pr) “” c, (eZIANu __ 1) 

or 

(17) 

For a given geometry, equation (17) is the 
same as the one given by Kronig and Schwarz 
[4] if the function G is linear. From above we 
see that this result is valid only for very high 
(Se + Pr) numbers, as one would expect on 
physical grounds, since this is the case when the 
viscous force balances primarily the electro- 
strictive force while all other forces are negli- 
gible. 

In Fig. 3 we plot the Nusselt number versus the 
product (Se * Pr) for different values of (Gr - Pr) 
based on the calculations of equation (161, where 
the constants C4 and C, are taken to be 5.56 
and 546 respectively.: It is seen that for small 

t This dependence is revealed in the ordinary natural 
convection case when we take into account the inertia. 
See the footnote co~esponding to equation (4). 

$ It will be seen later that these values correspond to 
gases. 

31 
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FIG. 3. The theoretical result yielding the Nusselt 
number versus the product (Se 1 Pr} for different 

combinations of the product (Gr - Pr) for gases. 

(Se * Pr) the convection is due almost entirely 
to the gravitational force, however as (Se * Pr) 
increases the electrostrictive convection becomes 
important and finally dominates the convective 
heat transfer. 

3. COMPARISON WITH EXPEFUMENTS 

Senftleben and Braun [Z] have measured the 
difference in heat transfer per unit time due to 
an electric field for a platinum wire of 0.03 mm 
in diameter and 7 cm in length placed at the 
center of a cylinder 34 mm in diameter. The 
cylinder was kept at temperature between 90” 
and 400°K. The following gases were tested: 
argon, oxygen, and ethyl chloride at pressures 
ranging between 87 and 740 mm Hg. The tem- 
perature differences between wire and cylinder 
were 41” and 82” and the electric field strength 
at the surface of the wire varied between 42 and 
108 KV/cm. Ashmann and Kronig [5] per- 
formed similar measurements for the following 
liquids : toluene, n-heptane, n-hexane and carbon 
tetrachloride. A platinum wire of 20 pm in 
diameter and 7 cm long was placed inside a 
4 cm diameter cylinder the surface of which was 
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kept at 0°C temperature. The temperature 
difference between the wire and the cylinder 
varied from 36” to 78” and the applied voltage 
between the cylinder and the wire from 113 to 
561 V. Measurements on the same liquids were 
also made by De Haan [6] with a wire of 16 cm 
long under slightly different temperatures and 
applied voltages. In these last experiments the 
diameter of the wire was varied. 

All thermophysical properties in the above 
experiments have been calculated at the wire- 
temperature. Fig. 4 shows a comparison be- 
tween equation (16) and Senftleben’s experiment 
in gases for C, = 5.56.t 

IO 

I.0 10 102 IO' 

Se./+ - 
FIG. 4. The theoretical result for gases compared with 

the experiment of Senftleben and Braun [2]. 

It is seen that they are in very good agreement 
both in trend and magnitude. The circular 
points for oxygen falling away from the main 
bulk of experimental data are recognized in 
[4] to be in error. Figs. 5 and 6 show the experi- 
mental data of [5] and [6] compared with 
(16). Here again one experimental point in the 
Nu versus (Se - Pr) plane was used for a given 

-t The constant is fixed by using one and only one 
experimental point corresponding to one (Gr . f’r> 
number and one (Se . PI-) number. 
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e *otusne d = 25.am Gr,Pr= 0.46 
0 To,“*“. d = 55,um GrPr = O.t?,-z0.26 
0 Tolusns d : IOOym G,.Pr = 046-0.64 
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Frc;. 5. The theoretical result for liquids compared 
with the experiment of Ashmann and Kronig [5]. 

e Toluene GrPr = 0.023- 

0 N-tkptone GrP, = 0.06 - 
e N-tiwme Gr.13 = 0.05 - 

. . Carbon TetrachloridsGr~Pr = 0.16 

Wire dlemster d= 20,um 

102 

Se.Pt- 

FIG. 6. The theoretical result for liquids compared 
with the experiment of De Haan [6]. 

Grashof number in order to evaluate C,. The 
value C, = 1.0 was chosen for both sets of 
data. For small values of the parameter (Se * Pr) 
the agreement with (16) is good, but for higher 
values there is a difference in trend upon com- 
parison with the data for gases and the present 
theory. It is shown in [6] that these differences 
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are due to the fact that the viscosity of liquids 
varies strongly with the temperature and that in 
the more extended field of flow corresponding to 
large diameters of the wire, some average value 
for the viscosity should be used rather than the 
value calculated for the temperature prevailing 
at the wall. On the other hand [S] gives as a 
possible explanation the fact that in their 
experiments the cylinder was closed at both 
ends thus impeding the circulation. 

From Figs. 4, 5 and 6 we also see that the 
theory defines very well in terms of (GP * Pr) 
the width of the band inside which the experi- 
mental points are contained. On the other hand 
from the scatter and range of these data, it is 
not possible to test the theoretical prediction 
which states that small differences in Nusselt 
numbers should correspond to higher Grashof 
numbers for the same Senftleben numbers. 

4. CONCLUSIONS 

When an electric field is applied between a 
horizontal heated wire and a coaxial cooled 
cylinder filled with an electrostrictive fluid, the 
heat-transfer rate from the wire to the cylinder 
increases; this is due to the presence of an 
additional thermal circulation current produced 
by the unbalanced electrostrictive forces in the 
upward direction. Since the temperature distri- 
bution after its modification by the gravitational 
convection is not axially symmetric with respect 
to the wire, the total electrostrictive force 
acting on the fluid located above the horizontal 
plane passing through the center of the wire, 
exceeds that found at the lower half and as a 
result, there will be a net force in the upward 
direction in addition to the gravitational one, 
thus producing an additional circulation and an 
increase in the heat transfer. An order of 
magnitude analysis based on nondimensional 
ar~ments and the fundamental conservation 
equations, combined with Langmuir’s idea of a 
“conduction ring” for fine wires has yielded the 
following analytic expression for the variation of 
the Nusselt number with the parameters Gr, Pr, 
and Se. 

- - C, -- Gr - Pr (ee/xU - Ijp 

where CI = 5.56, C,t = 546 for gases and 
C, = 1.0, C, = 219 for liquids. The above 
equation was tested with available experimental 
data and was found to be in good agreement with 
them. 
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APPENDIX A 

Derivation of the E/ectrostrictive Force Term 
The force on a neutral dielectric in the presence 

of a nonuniform electric field is [I] 

t It should be noted again that the value C, is fixed by 
the solution of the non-ekctrostrictive problem, whereas 
the value C, is chosen for best fit at one and only one 
experimental point corresponding to a single set of the 
numbers Nu, (Cr. Pr), and (Se - Pr). 



860 P. S. LYKOUDIS and C. P. YU 

where c is the dielectric constant. In the literature absence of heating, the net force due to electro- 
describing the phenomena in question, what is striction is 
called electrostrictive force, is based on the force 

Fwhich contains the component due to a non- 
uniform dielectric, besides the pure electro- 

?-;=&(x-x~)VE~. (A-5) 

strictive term [second contribution in (A-l)]. 
According to Debye’s theory [3] the electric 

For a smalI temperature difference T - TO, 

susceptibility x for gases neglecting the Lorentz- 
substituting (A-2) into (A-5) yields 

Lorentz force is of the following form 

(A-6) 

where 

and 

where IV = Avogadro’s number 
M = molecular weight of the gas 
u = coefficient of electric polarization 
p0 = permanent electric moment 
k = Boltzmann’s constant 
T = absolute temperature. 

In the last step of above equation all terms of 
order [(p,,E)/(kT)]e or higher have been neglected. 
This quantity represents the square of the non- 
dimensional ratio of the electrostatic energy of 
polarization to the molecular kinetic energy and 
is a very small number compared to one.7 

For liquids, there is no explicit form for y; 
Ashmann and Kronig [5] give the following 
expression 

e=T-TO, /3= l/T,, 

From (A-2), it is easy to show that 

Combining (A-l) and (A-3) gives 

4 Ee 
f=-Z-V’++V(E2x) =;VE? (A-4) 

If we denote by TO, pO and x the temperature, 
density and the electrostrictive force in the 

-___--- ______-- 
t For the experiments cited in the present report we 

have pO N lO-18 e.s.u. T N 3OO”K, E N lo5 V/cm. 
We find p,E/kTz 1O-2. 

(A-7) 

APPENDIX B 

The energy equation for fzuids with magnetic 
permeability and dielectric constant depending 
on temperature and density 

Boa-Teh Chu [lo] has derived the energy 
equation for continuous media in the presence 
of electromagnetic fields as follows : 

= V(XVT) + +. (B-1) 
In the above the function 4 contains both the 
viscous and joulean dissipation. The internal 
energy I/ and pressure p are split into “mech- 
anical” and “electromagnetic” parts as follows : 
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Pm 

(B-2) 

The above are valid for isotropic fluids with con- By using the above equations we find after some 
stitutive equations of the form algebra : 

‘D = c(p, 7$, 2 = /-k?(P, l-G. (B-4) 

[IO] states the theorem that the energy equation 
reduces to its pure mechanical form, not only 
when pe and E are constants, but also if they are at 
most.functions of mass density but not of tempera- 
ture. 

In this Appendix we show that, if we carry the 
approximation of (A-2) (and the similar one for the 
magnetic permeability) into the energy equation, 
then within this approximation the energy 
equation reduces again to its pure mechanical 
form although both pe and E are functions qf 
temperature. We present the proof only for the 
term involving the electric field since statements 
concerning the magnetic field terms are 
equivalent. 

(B-7) 

In the last step we have neglected the quantity 
(2/15) (P,,E/~T)~ as compared to one. 

Using the above, the energy equation becomes, 

P 
We use (A-2) in its approximate form to com- 

pute the partial derivatives in (B-2) and (B-3). 
From (B-2) it is easy to establish that 

P=pm+E2p (B-5) 

From (B-3) we find 

and the equation contains only mechanical 
terms. 

Assuming steady incompressible flow with 
negligible dissipation we find 

LX 
q*VT=aVzT (B-9) 

where a is the thermal diffusivity (B-9) and; is 
the velocity vector. This last equation is the one 
appropriate for the problem at hand. 

RCsum&-On &die la convection libre d’un fluide “electrostrictif” a l’intkrieur d’un cylindre refroidi, 
traverse suivant son axe par un fil chauffk, et soumis a un champ Clectrique radial non uniforme. 
On obtient une solution approchke par extension du modele de conduction de Langmuir, pour les 
fils fins, au cas ou il existe des forces d’tlectrostriction. On a trouve que I’accroissement du nombre de 
Nusselt dii a la circulation supplementaire produite par les forces d’electrostriction dependait du 
nombre de Grashof, du nombre de Prandtl et d’un troisieme nombre sans dimensions, de meme 
nature que le nombre de Grashof, mais faisant intervenir le champ Clectrostatique au lieu du champ 
gravitationnel. Les resultats theoriques sont compares aux donntes experimentales, l’accord est 

satisfaisant. 
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Zusammenfassung-Die freie Konvektion in einer der Elektrostriktion unterworfenen Fltissigkeit 
wird in einem waagrecht liegenden, gektihlten Rohr, in dessen Achse ein Heizdraht verlauft und das 
einem nicht einheitlichen radialen Feld ausgesetzt ist, untersucht. Eine Naherungslosung liess sich 
durch Erweiterung des Langmuir’schen Leitungsmodells fiir diinne Driihte auf den elektrostriktiven 
Fall erhalten. Es zeigte sich, dass die Zunahme der Nusseltzahl infolge zusltzlicher, von den elektro- 
striktiven KrLften hervorgerufener Zirkulation von der Grashofzahl, der Prandtlzahl und einer dritten 
charakteristischen, dimensionslosen Grijsse abhangt. Letztere ist von derselben Art wie die Grashof- 
zahl, jedoch ist ihr eher ein elektrostatisches Feld als ein Schwerefeld zugrunde zu legen. Die 
theoretischen Ergebnisse werden mit verftigbaren experimentellen Daten verglichen und zeigen gute 

Ubereinstimmung. 

&EOTaqHsI-klCCJIenyeTCR CBO6OAHaH KoHneKqMH IIpll Te4eHEIlI 3JreFiTpOCTp~IlCTLIBHOii 

HWAKOCTEI MeHQJy rOpH3OHTaJIbHOti Hal'peTOti ItpOBOJIOsKOti &I KOaKCBaJIbHbIM OXJIaIKK;[eHHbW 

qHJIBH~pOM IIpR'IIpHMeHeHHH HeOfiHOpOAHOrO paAHaJIbHOr0 3.?eKTpIWeCKOrO IIO.?H. fLpn6JW 
HEeHHOepe~eH~e~O~y~eHO~yTeMpaCnpOCTpaHeHHRMOAe~llyCJrOBIlFl~aHrMH)paAJIRTOHKBX 

npononosen IE cnysaro anenrpocrpnnannn. HatiAeHo, YTO yBenwieHHe WfCjIa HyCCenbTa 3a 

CYeT, AOIIOJIHMTeJIbHOt ~HpKyJUWlH, BbI3bIBaeMOti 3JIeKTpOCTpHKTHBIIbIMH CEIJIaMH, 3aBLICkIT 

OT nncna Fpacro+a,sncna npaHfiTJIR HTpeTbero xapaKTepEzcTnseKor0 6e3pa3MepHOrO ~HC:I;I 

TkUIaWWIa~paCI'O!$a,HOOTHeCeHHOrO CKOpee K3JIeKTpOCTaT119eCKOMyIIOJIIo,qeM rpaBaTau- 

HOHHOMY. TeopeTmqecKHe pe3yJIbTaTbI XOpOrUO COrJIaCyIOTCR C HMeIOIlJHMH WCnepHMeHTa- 

JlbHblMM AaHHbIMkl. 


