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Abstract—The free convection of an electrostrictive fluid enclosed between a horizontally heated wire
and a coaxial, cooled cylinder, under an applied nonuniform radial electric field, is examined. An
approximate solution is obtained by extending Langmuir’s conduction model for fine wires to the
electrostrictive case. It is found that the increase in Nusselt number due to the additional circulation
produced by the electrostrictive force depends on the Grashof number, Prandtl number and a third
characteristic non-dimensional number of the same nature as the Grashof number but based on an
electrostatic rather than gravitational field. The theoretical results are compared with available
experimental data and are found in good agreement.

e N S TSI T}

oq 0y
v*'

NOMENCLATURE
magnetic flux;

electric displacement vector;
diameter of the wire;

electric field;
electric field at surface of the wire;

force per unit volume on the fluid;

force in the absence of heating;

G Bgb sd3
rashof number, ——— &

gravitational acceleration;

equivalent gravitational acceleration

for the forces of electrostriction;

magnetic field intensity;

Boltzmann’s constant;

molecular weight of the gas molecule;
Avogadro’s number;

0
A ;
change of Nu due to the electrlc field;

Nusselt number,

Prandt] number -

pressure in the ﬂuld,
permanent electric moment of a gas
molecule;

853

a,

B,
2

heat transferred per unit length per unit
time;

velocity of the fluid;
radius of the wire;
internal energy;

0 E2d?
Senftleben number Bl—s;z—ﬁ—;
absolute temperature of the fluid;
absolute temperature at the surface of
the cylinder;
velocity component in vertical direc-
tion.

Greek symbols

thermal diffusivity;

coefficient of thermal expansion, ]l, ;
constant, specifying the temperature
dependence of X defined by (A-6) and
(A-7);

idealized boundary layer thickness;
dielectric constant;

temperature difference;

temperature difference at the surface of
the wire;

coefficient of heat conduction of the
fluid;

magnetic permeability;
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v, kinematic viscosity of the fluid;
Py mass density;
Pos mass density in the absence of heating;
a, coefficient of electric polarization;
Xs electric susceptibility of the fluid;
Xe»  electric susceptibility in the absence of
heating.
INTRODUCTION

FroMm the classical theory of electricity and
magnetism we know that the ‘“Maxwell stresses”
give rise to body forces made up of the following
components [1]: electrostatic (applied on free
electric charges); ponderomotive (the macro-
scopic summation of the elementary Lorentz
forces applied on charged particles); electro-
strictive (present when the dielectric constant is a
function of the mass density); a force due to an
inhomogeneous dielectric; its magnetic counter-
part, and the magnetostrictive force which is
present when the magnetic permeability is a
function of the mass density.

For an electrically neutral but electrically
conducting fluid in the presence of an electro-
magnetic field the only substantial force in a
great number of applications is the pondero-
motive force. Indeed, what is called today
magneto-fluid-mechanics deals exclusively with
this force. However there are cases in which the
forces associated with the dielectric constant,
although normally small, become important
when compared with equally small forces such as
bouyant ones. This paper deals with such a case.

About 1930 Senftleben and Braun [2] dis-
covered that when an electric field is applied
radially between a horizontal heated wire and a
cylinder, the heat-transfer rate increases up to
50 per cent provided a paraelectric gas (a gas
whose molecules carry a permanent electric
moment), is used. The authors attributed this
increase to the additional thermal circulation
current produced by the electrostrictive forces.
Fig. 1 shows the general layout of this experi-
ment.

According to Debye’s theory of -electric
polarization, variable electric susceptibility of
gases arises from the following two causes: (a)
the presence of an electric field which, even in a
symmetrical molecule, will induce a dipole
moment (electric polarization) and (b) if the

P. S. LYKOUDIS and C. P.

YU

T

FiG. 1. Experimental layout used by Senftleben and
Braun [2] for the study of the influence of electro-
strictive forces in natural thermal convection.

dipole possesses a permanent dipole nioment
(non-symmetric molecules), the molecule will
tend to align itself with the electric field. The
electric susceptibility due to the first cause
is proportional to the mass density and inversely
proportional to the absolute temperature [3].
As a result of the above dependence, if a cold
volume element is found in a nonuniform electric
field, the force at this point will exceed the force
to which a hot volume in the same position
is subjected. A tendency is thus produced for the
cold volume elements to replace the hot ones as
in the case of a pure gravitational force.

Kronig and Schwarz [4] adopted this physical
model and forwarded some arguments based on
general nondimensional considerations. They
employed the usual definitions of Nusselt num-
ber (Nu), Grashof number (Gr) and Prandtl
number (Pr) as well as a new nondimen-
sional number of the same nature as the Grashof
number, but based on an electrostatic rather
than gravitational field. In this work we call this
number Senftleben number (Se)t from the name
of one of the research workers who we believe
first studied this effect [2].

Kronig and Schwarz [4] assumed that the
Nusselt number can be written in the following
functional form;

- t In [4] this number is called “electrical characteristic
number™ and abbreviated to El.
¥ This form is suggested from experiments.
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Nu = F(Gr - Pr) 4 G(Se - Pr). 1)

The change of Nusselt number due to the appli-
cation of the electric field is then given by:

ANu = G(Se - Pr). (2)

Senftleben’s results on gases [1] appear to
agree with this dependence satisfactorily, if the
physical constants are based on the temperature
of the wire, since all the results can be collected
into a narrow band (an almost single curve) by
using (ANu) and (Se: Pr) as co-ordinates. In
order to further confirm the above arguments,
Ashmann and Kronig [5] and De Haan [6] con-
ducted several experiments with polar liquids.
They found that when an electric field is applied,
the heat transfer increases generally in the same
fashion as in gases.

Our purpose in the present paper is to forward
further the non-dimensional analysis of [4] by
providing an analytic expression for the Nusselt
number in its dependence on the Grashof,
Prandtl and Senftleben number. This is done
only in an approximate way, since the exact
solution of the conservation equations is
extremely difficult (if at all possible), because,
apart from the fact that the equations are
coupled, it is not possible to reduce them to
ordinary differential equations through similarity
arguments, nor are they of the boundary layer
type.t The approximation is based on an ex-
tension of Langmuir’s idea [7] of an effective
“conduction ring”.

2. ANALYSIS

The problem of free convection of a heated
fine wire with an electric field has been con-
sidered by Langmuir [7]; he idealized the boun-
dary layer by a stationary cylindrical ring around
the wire, through which the heat is transferred
from the wire by the mechanism of thermal
conduction only. If the idealized equivalent
“conduction ring” thickness is 8, the Nusselt
number (defined explicitly in the list of symbols)
is given by

2

e = o (15 8/ @

WTMBecause the boundary layer thickness for a very thin
wire is of the same order of magnitude or greater than the
radius of the wire.

For “thick” wires we have 28/d < 1, for very
fine wires, under investigation here, we have
28/d > 1. In the case of free convection with no
electric field, 28/d is determined by considering
the average film heat-transfer coefficient for the
wire having the same value as the average film
heat-transfer coefficient on a vertical plate with a
height? of 2-5d; the results are

25 [ 546\
S = (Gr Pr) for gases (4a)
5 19 \vé
23, _ (z%‘ﬁ) for liquids§.  (4b)

The Grashof and Prandtl numbers are defined
explicitly in the list of symbols. Substituting
these expressions for §/d into equation (3) gives

2
Ny = ——— 536 \TA] for gases (5a)
[1 T (Gr Pr) ]
2 .o
Nu = for liquids.  (5b)

219

o[+ (o) |

In extending these solutions to the case where
an electric field is present, let us consider the
fundamental conservation equations after the
following assumptions are made:

1. The flow is steady.

2. For a very long horizontal wire, the problem
is a two dimensional one; end effects are not
considered.

3. The flow is assumed to be semi-incompres-
sible, with the viscosity and thermal con-
ductivity remaining constant.

The conservation equations of mass, momen-
tum and energy are then as follows:

Vg=0 ©)

t The numerlcal value of 25 is suggested by Her-
manns solution [8] for a finite cylinder where the
boundary layer assumption is true.

§ 546 and 219 are obtained from Eckert’s solution over
a vertical plate [9]. We have also used Pr = 0-75 for
gases and Pr = 5-5 for liquids in the calculations of these
constants.



856

PO Vp -

q: Vg = ——- — gf — IByVE* + Wi ()
_q\- Vo = V26, 3

In the above 6 is the temperature difference of the
fluid relative to the temperature of the cylinder.

-
In (7), —gB8 is the usual force term in free
convection due to gravity, the electrostrictive
force is given byt —1B8y8VEZ2 In (8), we have
neglected the viscous dissipation and the part
of the internal energy due to polarization.}

The mechanism of action of the electro-
strictive forces is depicted in Fig. 2. The points
A, A’, B and B’ are the corners of a rectangle
with the horizontally heated wire located at its
center. The electrostrictive forces act in the

Isotherms

F1G. 2. The mechanism of action of electrostriction in
the presence of natural thermal convection.

outward radial direction as shown in the figure,
with the forces at the points 4 and A’ being larger
than the ones acting at B and B’, because a higher
temperature isotherm passes through them.
Furthermore we note that because of the
symmetry of the temperature field with respect
to the vertical plane passing through the axis

+ The derivation is given in Appendix A.
! See Appendix B for a complete discussion of the
energy equation.
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of the wire, the horizontal components of the
electrostrictive forces will balance each other.
It follows from the above discussion that the
net amount of the electrostrictive forces is in the
upward direction and their order of magnitude
from (7) is (By8sE®)/(r 4+ 8). On the other hand,
—

from the fact that V- E = 0 and for very thin
wires we have E/E; = r/(r -+ 8) ~ r{§ and hence
the force is equal to By0: E2r?/83. At this point we
assume, as in the case of free convection from a
fine wire, that the velocities are so small that the
inertia forces terms involving the square of the
velocities may be neglected. Moreover, since
there is no pressure difference imposed from the
outside, the pressure force in the vertical direc-
tion is negligible as in the case of the free convec-
tion from a vertical plate.

Bearing in mind the above, the order of magni-
tude of the vertical component of the momentum
equation and the energy equation may be written
in the following average sense:

BrOsEXd®  u

Clglggs + Cg ““~——83«~-r =y Sé (9}
Bs 8;
Couy=ag (10)

where u is the velocity component in the vertical
direction and C,, C,, C, are appropriate: con-
stants. Eliminating the velocity » from (9) and
(10), we obtain after some rearrangement

28\ Se (26 Cy ,
(@) e (d) om0
where
C, 16
C,=38 E’,’ Cy = CEC:, (12)
and
G E2d? ,
o PYOE (13)§

v

In the case of no electric field, Se = 0, and the
solution of (11) for 28/d is:

28 C~5 171
- (G.r ?‘p‘r) , (14)

§ Comparing this definition with the definition for the
Grashof number we see that they are the same if an
equivalent gravitational field g* is chosen as follows
g* = yE?/d.
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Comparing (14) with (5), we have Cy = 546 for
gases, and C, = 219 for liquids.

When Se is not zero, we must solve (11) for
28/d and substitute into (3) to find Nu as a
function of the quantities Gr- Pr and Se- Pr.
The result is rather cumbersome and hence
we prefer to present the ratio 28/d as a function
of Nu as follows:

28

& o¥Nu
7 e¥Nu — |,

(15)
Substituting (15) into (11) and rearranging
yields
Cy — Gr - Pr(e¥¥v — 1)
Se - Pr = Co@ =) -
The constant C, in (16) will be determined from
experiments and it is evident that it should
depend on the geometry of the experiment and
at most the Prandtl number of the fluid.t
For very large values of Se, it is seen in (16)
that the quantity (Gr « Pr) [(e¥ V%) — 1}* becomes
negligible and Nu ~ ANu. Equation (16} then
takes the following asymptotic form

Cs
C, (¥u 1)

(16)

(Se- Pr) =~

or
o 28 (Se - Pr). a”n
Cs

For a given geometry, equation (17) is the
same as the one given by Kronig and Schwarz
[4] if the function G is linear. From above we
see that this result is valid only for very high
(Se - Pr) numbers, as one would expect on
physical grounds, since this is the case when the
viscous force balances primarily the electro-
strictive force while all other forces are negli-
gible.

In Fig. 3 we plot the Nusselt number versus the
product {(Se - Pr) for different values of (Gr - Pr)
based on the calculations of equation (16}, where
the constants C, and C, are taken to be 5-56
and 546 respectively.} It is seen that for small

4N

t This dependence is revealed in the ordinary natural
convection case when we take into account the inertia.
See the footnote corresponding to equation {4).

1 1t will be seen later that these values correspond to
gases.
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Fic. 3. The theoretical result yielding the Nusselt
number versus the product (Se- Pr} for different
combinations of the product (Gr - Pr) for gases.

(Se « Pr) the convection is due almost entirely
to the gravitational force, however as (Se - Pr)
increases the electrostrictive convection becomes
important and finally dominates the convective
heat transfer.

3. COMPARISON WITH EXPERIMENTS

Senftleben and Braun [2] have measured the
difference in heat transfer per unit time due to
an electric field for a platinum wire of 0-:03 mm
in diameter and 7 cm in length placed at the
center of a cylinder 34 mm in diameter. The
cylinder was kept at temperature between 90°
and 400°K. The following gases were tested:
argon, oxygen, and ethyl chloride at pressures
ranging between 87 and 740 mm Hg. The tem-
perature differences between wire and cylinder
were 41° and 82° and the electric field strength
at the surface of the wire varied between 42 and
108 KV/cm. Ashmann and Kronig [5] per-
formed similar measurements for the following
liquids: toluene, n-heptane, n-hexane and carbon
tetrachloride. A platinum wire of 20 um in
diameter and 7 c¢m long was placed inside a
4 cm diameter cylinder the surface of which was
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kept at 0°C temperature. The temperature
difference between the wire and the cylinder
varied from 36° to 78° and the applied voltage
between the cylinder and the wire from 113 to
561 V. Measurements on the same liquids were
also made by De Haan [6] with a wire of 16 cm
long under slightly different temperatures and
applied voltages. In these last experiments the
diameter of the wire was varied.

All thermophysical properties in the above
experiments have been calculated at the wire-
temperature. Fig. 4 shows a comparison be-
tween equation (16) and Senftleben’s experiment
in gases for C, = 5-56.1

o.

' T I T T
© Argon GrePr= 16 X 1075 1:5 x 1073
® Oxygen 6rPr=0-86%100%096 x 1073
® Efhyl Chioride GrePr= 2.02%10°%35% 1073

Wire diometer d= 30 um

Cylinder diometer J= 34 mm
107
0%
2
< 1078
N 1074
107
1073
,o'l — ]
1078 L
1072 10~ 10 10 102 103

Se-Pr

FIG. 4. The theoretical result for gases compared with
the experiment of Senftleben and Braun [2].

It is seen that they are in very good agreement
both in trend and magnitude. The circular
points for oxygen falling away from the main
bulk of experimental data are recognized in
[4] to be in error. Figs. 5 and 6 show the experi-
mental data of [5] and [6] compared with
(16). Here again one experimental point in the
Nu versus (Se- Pr) plane was used for a given

1 The constant is fixed by using one and only one
experimental point corresponding to one (Gr- Pr)
number and one (Se - Pr) number.
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d= 25 um GrPr=2-0
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FiG. 5. The theoretical result for liquids compared
with the experiment of Ashmann and Kronig [5].

10 ’

O Toluene (Pure) Gr-Pr = 0-023~0:062
© Toluene GrPr = 0:023~0-052
@ N-Heptane Gr-Pr = 0.06 ~ 012

® N~ Hexane 6r-Pr = 0-05 ~ 03

& Coarbon Tetrachloride Gr-Pr = 0:16 ~ 0-33 /]

Wire dlameter o= 20.um
Cyl. diameter ©= 40mm |

107!
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102

10? 10° i0*

Se-Pr

FiG. 6. The theoretical result for liquids compared
with the experiment of De Haan [6].

Grashof number in order to evaluate C,. The
value C, = 1:0 was chosen for both sets of
data. For small values of the parameter (Se - Pr)
the agreement with (16) is good, but for higher
values there is a difference in trend upon com-
parison with the data for gases and the present
theory. It is shown in (6] that these differences
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are due to the fact that the viscosity of liquids
varies strongly with the temperature and that in
the more extended field of flow corresponding to
large diameters of the wire, some average value
for the viscosity should be used rather than the
value calculated for the temperature prevailing
at the walil. On the other hand [5] gives as a
possible explanation the fact that in their
experiments the cylinder was closed at both
ends thus impeding the circulation.

From Figs. 4, 5 and 6 we also see that the
theory defines very well in terms of {Gr- Pr)
the width of the band inside which the experi-
mental points are contained. On the other hand
from the scatter and range of these data, it is
not possible to test the theoretical prediction
which states that small differences in Nusselt
pumbers should correspond to higher Grashof
numbers for the same Senftleben numbers.

4, CONCLUSIONS

When an electric field is applied between a
horizontal heated wire and a coaxial cooled
cylinder filled with an electrostrictive fluid, the
heat-transfer rate from the wire to the cylinder
increases; this is due to the presence of an
additional thermal circulation current produced
by the unbalanced electrostrictive forces in the
upward direction. Since the temperature distri-
bution after its modification by the gravitational
convection is not axially symmetric with respect
to the wire, the total electrostrictive force
acting on the fluid located above the horizontal
plane passing through the center of the wire,
exceeds that found at the lower half and as a
result, there will be a net force in the upward
direction in addition to the gravitational one,
thus producing an additional circulation and an
increase in the heat transfer. An order of
magnitude analysis based on nondimensional
arguments and the fundamental conservation
equations, combined with Langmuir’s idea of a
“conduction ring” for fine wires has yielded the
following analytic expression for the variation of
the Nusselt number with the parameters Gr, Pr,
and Se.

Cy — Gr- Pr{e#Vv — 1)

Se - Pr = C,(@¥u 1)
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where C, = 556, C,t = 546 for gases and
C,= 10, C; = 219 for liquids. The above
equation was tested with available experimental
data and was found to be in good agreement with
them.
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APPENDIX A
Derivation of the Electrostrictive Force Term
The force on a neutral dielectric in the presence
of a nonuniform electric field is [1]

—

E? 9
f==~iVe—}-V(E25§ p) (A-1)

1 It should be noted again that the value C; is fixed by
the solution of the non-electrostrictive problem, whereas
the value C, is chosen for best fit gt one and only one
experimental point corresponding to a single set of the
numbers Nu, {Gr - Pr), and (Se - Pr).
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where « is the dielectric constant. In the literature
describing the phenomena in question, what is
called electrostrictive force, is based on the force

-

Jf which contains the component due to a non-
uniform dielectric, besides the pure electro-
strictive term [second contribution in (A-1)].
According to Debye’s theory [3] the electric
susceptibility x for gases neglecting the Lorentz~
Lorentz force is of the following form

Np JZ; I
= e — ] = —= 1 —
x=e—1 M{0+3kT[ 15
PoE\? ~ YP Dy
(T«Tr) + ]} ol ( tar) AP
where N = Avogadro’s number
M = molecular weight of the gas
o = coefficient of electric polarization
Po = permanent electric moment
k = Boltzmann’s constant

T = absolute temperature.

In the last step of above equation all terms of
order [(poE)/(kT)J? or higher have been neglected.
This quantity represents the square of the non-
dimensional ratio of the electrostatic energy of
polarization to the molecular kinetic energy and
is a very small number compared to one.}

From (A-2), it is easy to show that

Oe Oy

Combining (A-1) and (A-3) gives

E2

7 S Vet V(B ) =S VEL (A9)

—_
If we denote by T, p, and f, the temperature,
density and the electrostrictive force in the

1 For the experiments cited in the present report we
have p, ~ 10-® esu. T =~ 300°K, E ~ 10° Vjcm.
We find pE/KT =~ 102,
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absence of heating, the net force due to electro-
striction is

f—Jfo=%( — xo) VE& (A-5)
For a small temperature difference T — T,
substituting (A-2) into (A-5) yields

—_—

T—To =~ 4 pofOyVE? (A-6)

where

§=T—T, B=1/T,

and

_N 2p§
= ulo  s)

For liquids, there is no explicit form for y;
Ashmann and Kronig [5] give the following

expression
I 8X)
=— (=) . A7
v poB (8T P ( )

APPENDIX B
The energy equation for fluids with magnetic
permeability and dielectric constant depending
on temperature and density
Boa-Teh Chu [10] has derived the energy
equation for continuous media in the presence
of electromagnetic fields as follows:

—_

a | d _1)_—1?_3 B)
P[TIJFP@(P dt(?

~ES (_-?)] — VAV + 4. (B-D)

In the above the function ¢ contains both the
viscous and joulean dissipation. The internal
energy U and pressure p are split into “mech-
anical” and “electromagnetic” parts as follows:
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- = 3”.0 —_ - Oe
p=pRT+} (B H—pt'3) +4(D-E + o5 (B-2)
— P P y
Pm Pe
. R 1 [D? T e B2 T Jue
U*Uo+5;—_—1‘(T_To)+2—p[—€—(1+;ﬁ)“l-;e(l +’; 6_]')] (B-3)

| NI - —

-/

e

Un

~
Ue

The above are valid for isotropic fluids with con-
stitutive equations of the form
-—

D=pDE  B=pdp, DH. (B-4)

[10] states the theorem that the energy equation
reduces to its pure mechanical form, not only
when u. and € are constants, but also if they are at
most functions of mass density but not of tempera-
ture.

In this Appendix we show that, if we carry the
approximation of (A-2) (and the similar one for the
magnetic permeability) into the energy equation,
then within this approximation the energy
equation reduces again to its pure mechanical
form although both p. and € are functions of
temperature. We present the proof only for the
term involving the electric field since statements
concerning the magnetic field terms are
equivalent.

We use (A-2) in its approximate form to com-
pute the partial derivatives in (B-2) and (B-3).
From (B-2) it is easy to establish that

2

p=pm+ s (B-5)
From (B-3) we find
E21e 3kMT
U= Unts g [ ®9

By using the above equations we find after some

eral)-F a0

1 2 (peEN21dU, 1 d
[1+“5(?T)]”d?+ia

(B-7)

In the last step we have neglected the quantity
(2/15) (poE/KT)? as compared to one.
Using the above, the energy equation becomes,

[dgtm +p’":t (1)] =V-QVT)+ ¢ (B8)

and the equation contains only mechanical
terms.
Assuming steady incompressible flow with
negligible dissipation we find
-

q-VT = o VT (B-9)

-
where a is the thermal diffusivity (B-9) and ¢ is
the velocity vector. This last equation is the one
appropriate for the problem at hand.

Résumé—On étudie la convection libre d’un fluide “electrostrictif” 4 l'intérieur d’un cylindre refroidi,

traversé suivant son axe par un fil chauffé, et soumis a

un champ électrique radial non uniforme.

On obtient une solution approchée par extension du modele de conduction de Langmuir, pour les

fils fins, au cas o il existe des forces d’électrostriction. On a trouvé que I’accroissement du nombre de

Nusselt dii a la circulation supplémentaire produite par les forces d’électrostriction dépendait du

nombre de Grashof, du nombre de Prandtl et d’'un troisiéme nombre sans dimensions, de méme

nature que le nombre de Grashof, mais faisant intervenir le champ électrostatique au lieu du champ

gravitationnel. Les résultats théoriques sont comparés aux données expérimentales, 1’accord est
satisfaisant.



862

P. S. LYKOUDIS and C. P. YU

Zusammenfassung—Die freie Konvektion in einer der Elektrostriktion unterworfenen Fliissigkeit
wird in einem waagrecht liegenden, gekiihiten Rohr, in dessen Achse ein Heizdraht verlduft und das
einem nicht einheitlichen radialen Feld ausgesetzt ist, untersucht. Eine Niherungslosung liess sich
durch Erweiterung des Langmuir’schen Leitungsmodells fiir diinne Drihte auf den elektrostriktiven
Fall erhalten. Es zeigte sich, dass die Zunahme der Nusseltzahl infolge zusitzlicher, von den elektro-
striktiven Kriften hervorgerufener Zirkulation von der Grashofzahl, der Prandtlzahl und einer dritten
charakteristischen, dimensionslosen Grosse abhiingt. Letztere ist von derselben Art wie die Grashof-
zahl, jedoch ist ihr eher ein elektrostatisches Feld als ein Schwerefeld zugrunde zu legen., Die
theoretischen Ergebnisse werden mit verfiigbaren experimentelien Daten verglichen und zeigen gute
Ubereinstimmung.

Annoramua—llccnenyerca CcBOOOTHAH KOHBEKLHMA INPH TEYEHMHM SJIEKTPOCTPUKTHBHOI
HUTROCTH MEMAY TOPUBOHTAIBHON HArpeToil MPOBOIOUKON ¥ KOAKCHAIBHEIM OXJIAMICHHEIM
MWIMHELPOM IIPU NPYMEHEHWH HEOZHOPOLHOTO PARMAIBLHOrO HIEKTpUdeckoro noxasa, [pubuu-
’HEHHOe pellleHHe IOIy4eHo IIyTeM PACTIPOCTPAaHEHUA MOeNH YCIOBUA JIAaHTMIOpA [IJIfl TOHRUX
NPOBOJIOYEK K CIIydaw siexrpocrpukanuu. Halineno, uro yseandenne umcaa Hyccembra sa
CYeT, MONOJIHHUTEIHHON IUPKYIALNM, BHAHBAEMON IEKTPOCTPUKTUBHEIMYI CHIIAMY, 3aBUCHUT
ot uncaa I'pacroda, uncaa IIpaHATIA U TPETHETO XAPAKTEPUCTHYEKOT0 Ge3pasMepPHOro YMCTa
THna qucia I'pacroda, HO OTHECEHHOT'0 CKOPee K JIeKTPOCTATHYECKOMY IIOJIO, YeM IDABUTALL-
nouHoMy. TeopeTHueckye PesyJbTAaTH XOPOIMIO COTMACYIOTCH ¢ MMEIOUMMU HKCIePUMEeHTA-
JIBHEIMM JTAHHBIMH.



